Empirical Software Engineering (2021) 26: 27
https://doi.org/10.1007/510664-020-09904-w

®

Check for
updates

Helping or not helping? Why and how trivial packages
impact the npm ecosystem

Xiaowei Chen’ . Rabe Abdalkareem? © . Suhaib Mujahid' - Emad Shihab' - Xin Xia3

Accepted: 13 November 2020/ Published online: 2 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract

Developers often share their code snippets by packaging them and making them available
to others through software packages. How much a package does and how big it is can be
seen as positive or negative. Recent studies showed that many packages that exist in the
npm ecosystem are trivial and may introduce high dependency overhead. Hence, one ques-
tion that arises is why developers choose to publish these trivial packages. Therefore, in
this paper, we perform a developer-centered study to empirically examine why developers
choose to publish such trivial packages. Specifically, we ask 1) why developers publish triv-
ial packages, 2) what they believe to be the possible negative impacts of these packages, and
3) how such negative issues can be mitigated. The survey response of 59 JavaScript devel-
opers who publish trivial npm packages showed that the main advantages for publishing
these trivial packages are to provide reusable components, testing & documentation, and
separation of concerns. Even the developers who publish these trivial packages admitted
to having issues when they publish such packages, which include the maintenance of mul-
tiple packages, dependency hell, finding the right package, and the increase of duplicated
packages in the ecosystems. Furthermore, we found that the majority of the developers sug-

Communicated by: Massimiliano Di Penta

< Xiaowei Chen
c_iaowei@encs.concordia.ca

Rabe Abdalkareem
abdrabe @ gmail.com

Suhaib Mujahid
s_mujahi @encs.concordia.ca

Emad Shihab
eshihab@encs.concordia.ca
Xin Xia
xin.xia@monash.edu

Data-Driven Analysis of Software (DAS) Lab, Department of Computer Science and Software
Engineering, Concordia University, Montreal, Quebec, Canada

Software Analysis and Intelligence Lab (SAIL), Kingston, Canada

Faculty of Information Technology, Monash University, Clayton, Australia

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09904-w&domain=pdf
http://orcid.org/0000-0001-9914-5434
mailto: c_iaowei@encs.concordia.ca
mailto: abdrabe@gmail.com
mailto: s_mujahi@encs.concordia.ca
mailto: eshihab@encs.concordia.ca
mailto: xin.xia@monash.edu

27 Page2of 24 Empir Software Eng (2021) 26: 27

gested grouping these trivial packages to cope with the problems associated with publishing
them. Then, to quantitatively investigate the impact of these trivial packages on the npm
ecosystem and its users, we examine grouping these trivial packages. We found that if trivial
packages that are always used together are grouped, the ecosystem can reduce the number
of dependencies by approximately 13%. Our findings shed light on the impact of publishing
trivial packages and show that ecosystems and developer communities need to rethink their
publishing policies since it can negatively impact the developers and the entire ecosystem.

Keywords Trivial packages - JavaScript - Node.js - npm - Code reuse - Empirical studies

1 Introduction

Recently, Node.js/JavaScript has become one of the most commonly and widely used pro-
gramming languages (StackOverflow 2020). One of the main forces behind the popularity
of JavaScript is the fact that code sharing is prominent and even encouraged by its devel-
oper community (Cox 2019). This code sharing is supported by the node package manager
(npm). For example, npm provides over 750,000 packages that developers can use.

Despite the advantages of such code sharing, there are some downsides of such code
sharing that include lower software quality, increased maintenance effort and even legal
issues (Abdalkareem et al. 2017; Zimmermann et al. 2019; Orsila et al. 2008). In an incident,
the reuse of a very simple Node.js package called left-pad, which was used by another
well-known package called Babel, caused interruptions to some of the largest Internet sites,
including Facebook, Netflix, and Airbnb (MacDonald 2018). The dependency that caused
Babel to break was merely a trivial 11-line package that implemented a left padding string
function.

There have been studies that looked at why these trivial packages are used. In our prior
work (Abdalkareem et al. 2017), we defined and examined trivial packages in the npm
ecosystem, and discovered a number of relevant findings. we found that 1) trivial JavaScript
packages tend to be small in size and less complex and they are prevalent, approximately
making up 16.8% of all the packages on npm. 2) JavaScript developers generally use trivial
packages since they believe that trivial packages provide them with well-tested code; how-
ever, they are concerned about the management of extra dependencies. Moreover, our study
showed that in some cases, these trivial JavaScript packages can have their own dependen-
cies, imposing significant overhead on the maintenance of software projects. However, this
phenomenon has another side to the coin, which is why are these trivial packages even pub-
lished in the first place. Is it for personal satisfaction, or is it for technical reasons? More
importantly, what impact do publishing such trivial packages have on the npm ecosystem.

Therefore, we perform a study to understand why developers publish trivial packages,
what they believe to be the drawbacks of publishing them, and how we can alleviate their
negative effects if any. In particular, we examine the following research questions:

— RQI: What are the potential advantages of publishing trivial packages? Prior work
shows that trivial packages are commonly used in JavaScript projects and develop-
ers believe that they provide them with well-tested code (Abdalkareem et al. 2017;
Abdalkareem 2017). However, the intention of publishing these trivial packages is still
a question to be answered. In this research question, we aim to discover why developers
publish trivial packages in the npm ecosystem in the first place.

— RQ2: What are the potential disadvantages of publishing trivial packages? Consider-
ing the fact that trivial packages exist and make up to approximately 16% of the npm

@ Springer

Empir Software Eng (2021) 26: 27 Page3of 24 27

ecosystem, they bring with them many problems such as inflating the npm ecosystem.
However, up-to-date, the impact of these trivial packages on the npm ecosystem has not
been examined yet. Thus, in this question, we aim to investigate the negative impact of
having such trivial packages.

— RQ3: How do developers believe that we can alleviate the overhead of having so many
trivial packages? Related to RQ2, we argue that JavaScript developers have dealt with
the side effects of trivial packages. In addition, their experience related to these trivial
packages can uncover some practical solution to alleviate the negative impact associated
with these trivial packages. Therefore, we ask the question of how developers alleviate
the drawbacks associated with these trivial packages.

— RQ4: What is the impact of grouping trivial packages on the npm ecosystem? Based
on the gained insight from the prior RQs, we found that developers provided many
suggestions to potentially alleviate the disadvantages associated with trivial packages.
But it is not clear how much (if any) these suggested alleviation strategies benefit the
developers. Therefore, we set out to quantitatively examine the impact of the most cited
alleviation strategy - grouping some trivial packages.

To perform our study, we started by analyzing the source code of more than 750,000
npm packages to identify trivial packages and the developers who publish them in the npm
ecosystem. We found that out of all packages published on npm, 15.09% of them are iden-
tified as trivial packages. We also found that 28.7% of developers on npm has published at
least one trivial package.

Once we identified developers who published trivial packages, we surveyed 59
JavaScript developers to answer our research questions. Our findings show that develop-
ers believe that building reusable components, testing & documentation, and separation
of concerns are the main advantages for publishing trivial packages. However, developers
reported several problems related to having these trivial packages in the npm ecosystem
that include, the overhead of maintaining multiple packages, the increase of dependency
hell, which means more complex dependency management for the npm ecosystem and for
their projects as well, and difficulty in finding the right packages. Moreover, when asking
developers about their strategies for alleviating the problems related to publishing triv-
ial packages, we observed that grouping trivial packages, using dependency management
tools, and providing better search tools are the most suggested actionable solutions by the
JavaScript developers. These findings help the research and developer communities to have
a more holistic view of the positives and negatives that trivial packages have on the npm
ecosystem.

In addition, we investigated the applicability of applying the most suggested strategies
from the developers to alleviate the problem of having so many trivial packages, which is
grouping these trivial packages. We found that when trivial packages are grouped based on the
co-usage, the npm ecosystem can reduce the number of dependencies by approximately 13%.

Finally, to assists the replication of our study, we made all the analyzed npm packages
and survey responses publicly available (Chen et al. 2019).

Our work makes the following main contributions:

— We analyze more than 750,000 npm packages to identify trivial packages and the
developers who publish them.

— We conducted a survey with 59 JavaScript developers to better understand why devel-
opers publish trivial packages and the problem associated with such practices. We also
investigate how developers alleviate the reported drawbacks.

@ Springer

27 Page 4 of 24 Empir Software Eng (2021) 26: 27

— We examine the practicality of applying the strategy of grouping trivial packages to
eliminate their problems based on the developers’ suggestions.

Paper Organization The remainder of this paper is organized as follows. The background
and the motivation of our study presented in Section 2. In Section 3, we present our study
design. In Section 4, we present the results of our empirical study, while we discuss some
implication of our findings in Section 5. In Section 6, we discuss the related work. Section 7
discuses the threats to the validity of our analyses. Finally, Section 8 concludes our paper.

2 Background and Motivation

In our prior work (Abdalkareem et al. 2017), we examined why JavaScript application
developers use trivial packages in the npm ecosystem. Specifically, we first started by defin-
ing what is a trivial package, which based on a user study with JavaScript developers, was
defined to be packages that contained 35 lines of code or less and a McCabe’s cyclomatic
complexity less than or equal to 10. Using that definition, we mined the source code of
38,807 JavaScript applications to identify the developers who introduce and use at least
one trivial package into the examined application. We then surveyed those developers who
use the packages to understand the reasons for and drawbacks of using trivial packages.
In total, we received responses from 88 JavaScript developers, and then we analyzed those
responses.

Based on our study, we found that trivial packages are commonly and widely used in
JavaScript applications, with around 11% of the analyzed JavaScript applications directly
depending on at least one trivial package. As for the reasons why developers use trivial
packages, we found that 54.6% of the developers in our survey believe that trivial packages
provide them with a well-implemented and -tested code, and 47.7% of them stated that
increased productivity. Developers also mentioned other reasons for using trivial packages
that include improving the readability and performance of their code.

However, our findings show that developers (55.7%) believe that using trivial packages
results in a dependency mess that makes it hard to update and maintain. Also, develop-
ers stated that using trivial packages makes their applications vulnerable to breakage and
security issues. Moreover, when we empirical examined the most cited reason and draw-
back of using trivial packages, we found that contrary to JavaScript developers beliefs that
trivial packages are well-tested, only 45.2% of trivial packages and even some of these
trivial packages can bring more pain than they are worth since some have as many as 20
dependencies.

Although our prior work provided a comprehensive view of why developers use trivial
packages, these findings raised the important question - why do developers even pub-
lish such trivial packages in the first place? Hence, complementary to our previous work
in Abdalkareem et al. (2017), we want to know the real motivation that derives JavaScript
developers to publish such packages even though our prior work showed some bad con-
sequences of using them. For example, studying trivial packages from the publisher’s
perspective will reveal their impact on the JavaScript community and on the ecosystem that
they belong to. For example, as we show later in this paper, while some developers believe
that they publish trivial packages to build reusable components, others stated they publish
trivial packages for their own personal satisfaction. Having such a perspective (i.e., the pub-
lisher’s) helps us better understand the context in which these trivial packages are created
and also helps the ecosystem understand how they might want to handle such packages.

@ Springer

Empir Software Eng (2021) 26: 27 Page 5of 24 27

3 Study Design

We would like to better understand the motivations of developers for publishing triv-
ial packages and the impact of these packages on the npm ecosystem. Our study is a
developer-centered and covers four main research questions:

— RQI: What are the potential advantages of publishing trivial packages?

— RQ2: What are the potential disadvantages of publishing trivial packages?

— RQ3: How do developers believe that we can alleviate the overhead of having so many
trivial packages?

— RQA4: What is the impact of grouping trivial packages on the npm ecosystem?

To answer the first three aforementioned questions, we conducted an online survey
with JavaScript developers who publish trivial packages and qualitatively analyze their
responses. To identify the potential survey candidate developers, we first analyzed the npm
ecosystem, identified developers that actually publish trivial packages and sent out our
online survey to them. To answer the fourth question, we analyzed the npm ecosystems and
identify co-usage trivial packages. In the following subsections, we describe our data col-
lection process and our survey design. We also describe our method of grouping co-usage
trivial packages.

3.1 Trivial Package Dataset

Our study exclusively examines npm. We choose to examine the npm ecosystem for sev-
eral reasons. First, npm is one of the largest and fastest growing software ecosystems - from
2017 to 2018, npm nearly doubled in size (DeBill 2019; Decan et al. 2018). Second, since
we wanted to examine trivial packages, it is easier for us to build on prior work by Abdalka-
reem et al., who provided clear guidelines of how we can determine what a trivial package
is (Abdalkareem et al. 2017; Abdalkareem 2017).

To obtain our dataset, we extracted the list of all published packages from the npm reg-
istry (npm Documentation 2020), which developers use to publish their packages, make
them available for others to use. We collected the list of packages as of September Ist,
2018. We found that there are 752,012 registered npm packages. We extracted the URL of
the tar file of all the packages. Then, we developed a crawler to clone them locally into our
machines. Since some packages do not exist on the npm registry or are unpublished (i.e., we
received a 404 error), we were not able to clone 4,298 of them. In the end, we cloned the
source code of 747,714 npm packages published by 202,422 unique developers since some
developers had published more than one npm packages.

Once, we had the 747,714 npm packages locally, we analyzed them to identify the trivial
packages. To do so, we applied the definition provided by Abdalkareem et al. (2017), where
they define trivial packages through conducting a user-study with JavaScript developers. In
their user-study, Abdalkareem et al. asked developers to examine randomly selected npm
packages and mark the ones that the developers consider them trivial packages. Then, they
analyzed the marked packages based on their size and complexity and defined a trivial
package as a JavaScript package that has {XLOC <350 Xcomplexity < 10}, where X7 oc
represents the JavaScript LOC and X compiexiry represents McCabe’s cyclomatic complexity
of the package X. We refer readers to the original paper by Abdalkareem et al. (2017) for a
full detailed explanation of the user study.

@ Springer

27 Page 6 of 24 Empir Software Eng (2021) 26: 27

To apply this definition to all the packages in our dataset, we use the Understand tool
by SciTools (Tool 2020). Understand is a source code analysis tool that provides various
code metrics. Following our analysis, we found that there are 112,833 trivial packages in
our dataset, which represents 15.09% of all npm packages.

To better understand our dataset, we perform some basic analysis. We perform this anal-
ysis to extract information about the developers who published trivial packages. We found
that the 112,833 trivial packages in our dataset are published by 58,012 developers, which
means that 28.7% of developers on npm have published at least one trivial package. Table 1
shows various statistics for developers on npm based on their published packages—trivial
and all.

We observe that overall, the mean number of packages published by developers on npm
is 3.73, while the mean for publishing trivial packages is 0.56 for all the developers on
npm. However, when we examine only the number of packages published by developers
who publish at least one trivial package, we observe that the mean is 7.13. The table also
shows that on average developers who published at least one trivial package had published
1.94 trivial packages. This analysis shows that developers who publish trivial packages are
productive and active developers within the npm ecosystem.

3.2 Developer Survey Design

We designed an online survey that included five questions. We first asked two questions
about the participants’ background. Then, we asked developers three open-ended questions
to give respondents maximum flexibility to express their opinions, and these questions were
optional. These questions were 1) what they believe to be the main advantages of publishing
trivial packages, 2) what they believe to be the disadvantages of publishing trivial packages,
and 3) how they would alleviate the disadvantages of publishing trivial packages.

Our dataset contained 202,422 JavaScript developers. Since this number is quite large
and most of them publish only one package, we decided to only survey developers who had
published at least 10 trivial packages on npm. Also, these selected developers are consid-
ered to be active developers and have an experience of publishing trivial packages since they
published at least 10 trivial packages. We found 876 developers who met this condition.
We then randomly selected 250 developers among these 876 developers and collected their
name and emails. We selected this number since we did not want to overwhelm the npm
developer community with our invitation to the survey. The invitation email included the
number of detected trivial packages published by the developer and named one of the pub-
lished trivial packages as an example. We received 59 responses in the first three days after
making the survey available online for a week (i.e., the response rate is 23.6%). We believe
that this response rate is acceptable and within the line with other survey-based studies in
software engineering (Singer et al. 2008).

Table 2 shows the developers’ experience and their positions. The Table shows that of
the 59 participants in our survey, 47 have more than five years of development experience, 7
had between four to five years of development experience, and only 5 developers have less
than three years of development experience. As for the participant’s positions, the majority
of them are working in industry with a number of 43 and 7 of them are freelance developers.
The Table also shows that 9 developers have other backgrounds like researchers or company
owners. Overall, the participants’ background in our survey shows that most of them are
experienced developers.

@ Springer

Page 7 of 24 27

Empir Software Eng (2021) 26: 27

el 001 ¥6'1 00'1 el 000 960 000 So5eOTd [BIALLL,
TILY 00C el'L 00°1 TILY 00°1 eL'e 00°1 sogexoed [V
XBIA UBIPSJA UBIIA UI XEN URIPII E) AN UrA

sageyoed [e1arn paysiqnd oym siodofareg sageyoed paystiqnd oym s1odofoAdp [V sageyoeq

a3eyoed [e1AL) QUO)SBI] JB
ystqnd oym s1odofaaap AJuo 10} pue ‘s1odo[oAap [[e 10J ([[e pue [eIALD) saSeyord Jo roquinu oy ‘wdu uo siadofaaap Aq paysiiqnd saSeyoed jo requunu oy jo Arewwung | ajqep

pringer

A's

27 Page 8 of 24 Empir Software Eng (2021) 26: 27

Table 2 Background of survey participants

Experience # Developers’ Position #
1-3 5 Developer working in industry 43
4-5 7 Freelance Developer

>5 47 Other

3.3 Manual Analysis of Survey Responses

Since our study is qualitative in nature, and our survey questions are open-ended free-form
text, we performed a formal process to analyze the results from our survey (Seaman 1999).
For each of the open-ended questions, we extract the participants’ responses and print them.
Then, we conduct a three-stage process. In the first step, the first two authors carefully read
the participants’ answers and came up with an initial list of categories that the responses fell
under. After that, the two authors discussed these initial categories to come up with the final
themes. In the third step, the same two authors went through the responses and classified
them according to the extracted themes. To confirm that the two authors correctly classified
the responses to the right category, we measure the classification agreement between the
two authors. We use Cohen’s Kappa coefficient (Fleiss et al. 2013). Cohen’s Kappa coef-
ficient is a widely used statistical method that evaluates the inter-rater agreement level for
categorical scales. This coefficient has a range between -1.0 and 1.0, where -1 means neg-
ative agreement, O indicates no agreement, whereas 1 is full agreement. In our work, we
consider the value of this coefficient to be excellent inter-rater agreement when it is bigger
than 0.75 (Fleiss et al. 2013). Finally, for the responses that the two authors failed to agree
on, the third author was consulted to resolve the differences and help to categorize these
responses.

3.4 Grouping Co-usage Trivial Packages

To quantitatively examine the impact of the most cited alleviation strategy suggested by our
survey participants, we examine the idea of grouping some trivial packages.

One of the first questions that arises is what strategy should be used to perform this
grouping? One of the most intuitive ways to group trivial packages is based on their co-
usage. The idea is that if two or more trivial packages are frequently used together in a
software application, then it would make sense to group these trivial packages together.
For example, given two packages, Packy and Packy,, we measure their co-usage as a ratio
of their average occurrence. Here, the average is simply the occurrence of the individual
packages divided by the size of the group. For instance, if Packy and Pack, have been
used 10 and 9 times, respectively, and their co-usage is 9 (i.e., they appeared together 9
times), then the frequency of co-usage is given as lfj = 0.95. This frequency of co-usage

of a group of packages can range between 0 and l;2 where a high value indicates that the
co-usage is popular.

For the sake of our investigation, we decide to group trivial packages where the majority
of their appearances are together, i.e., we group any packages that have a co-usage > 0.5.
Also, due to the extensive computation power required to run our analysis, we count only
the co-usage groups that appear more than forty times in our dataset.

@ Springer

Empir Software Eng (2021) 26: 27 Page 9 of 24 27

We extracted the co-usage of trivial packages in the entire npm ecosystem. To do that,
we parsed the packages . json of the 747,714 packages in npm. Given the sheer volume
of packages and possible combinations, we limited our analysis to co-usage groups that had
at least 40 appearances. In total, we found 87,092 cases of trivial package co-usages in our
dataset.

4 Study Results

In this section, we present our study results that help us better understand why developers
publish trivial packages, what they believe to be the main disadvantages of publishing trivial
packages, if any and how do they alleviate these drawbacks.

4.1 RQ1: What are the Potential Advantages of Publishing Trivial Packages?

To understand why developers publish trivial packages, we explicitly ask survey participants
about the main advantage(s) for publishing trivial packages. After our manual analysis of
the survey responses, we were able to extract seven main reasons for publishing trivial
packages. The ‘Other’ class was added to classify reasons that rarely appeared and/or did
not fit into any of the major reasons. We also examine the level of agreement between the
two annotators and found that the value of Cohen’s Kappa coefficient is equal to 0.84, which
is considered to be an excellent agreement (Fleiss et al. 2013).

Table 3 shows the extracted reasons and the percentages of responses that correspond
to each reason. Since some developers provide more than one reason for publishing trivial
packages, the percentages may add up to more than 100%. We detail each reason below:

1. Building Reusable Components (64.41%). The most frequently cited reason for pub-
lishing trivial packages is the creation of reusable components. Even though these trivial
packages are typically small, and in most cases can be easily written by the develop-
ers themselves, developers believe that creating a reusable component out of them is
of value. For example, P4, P17, & P19 stated that P4 “I can compose complex appli-
cation using ‘lego blocks’ of npm modules, easily swapping on out for another when
necessary”, P17 said that “Avoid re-implementing the same things across projects.” &
P19 “Publishing a package that does one thing well means never having to write that

Table 3 Reasons for publishing trivial packages

ID Reasons Responses (%)

1. Building Reuse Component 64.41% [|

2. Tested and Document 33.90% [|

3. Separation of Concerns 32.20% |

4, Optimization 27.12% |

5. Helping the Community & Per- 22.03% |
sonal Satisfaction
Maintenance Overhead 16.95% [|
Dependency Management 6.78% |
Other 11.86% 1

Responses can sum to more than 100% since respondents can report more than one reasons

@ Springer

27

Page 10 of 24 Empir Software Eng (2021) 26: 27

code again.” Although this reason seems to be obvious, it is interesting to see develop-
ers taking the benefit of code reuse to the extreme where they create a package even for
such simple tasks.

Test and Documentation (33.90%). The second most cited reason by developers for
publishing trivial packages is the fact that trivial packages can be easily tested and doc-
umented. Approximately 34% of the developers in our survey mentioned that because
trivial packages are small, they can be easily tested in isolation. For example, P50 stated
that “They are easier to write tests for because they are small.” and P27 said “Another
advantage of small modules is that when a developer chooses some subset of their
current problem, they can focus on handling every edge-case and error in which the
function can be used”. The developers also believe that providing documentation for
trivial packages is easy since they only provide simple tasks. For example, P18 explains
this as follows “Most of the very small packages are actually more mean as documen-
tation, e.g., ‘this is how I solved it’ ”. The provided responses may be indicating a
bigger challenge, which is the lack of tools and techniques to effectively test JavaScript
applications (Fard and Mesbah 2017). Either way, it is interesting to see that developer
consciously publish these small packages since they ease testing and documentation.
Separation of Concerns (32.2%). Developers also reported publishing trivial pack-
ages help them to focus on the implementation of specific tasks. More than 32% of the
developers mentioned that they publish trivial packages because these packages imple-
ment a very specific task. Trivial packages are small, hence, they can be combined into
the applications more easily and help to keep the applications code small and clear. For
example, developer P37 said “The main advantage is isolating the problem down to a
scope of a tiny re-usable component”, developer P30 said “Separation of concerns”,
and P35 said “Base of common solutions to common [micro] problems. I would say
micro packages are always better than heavy all-in-ones” . Interestingly, some develop-
ers link the publishing of trivial packages to one of unix’s philosophy of writing small
programs (Wikipedia 2018), as one developer P57 stated “It fits the unix model of small
sharp tools that do one thing well and can be composed to do complex things.”
Optimization (27.12%). Developers also reported that creating trivial packages can
provide them with ‘lightweight’ packages. Compared to larger packages, trivial pack-
ages require less space with zero dependencies since they provide one functionality.
One developer summarized these advantages as follows: P15 said “They ‘trivial pack-
ages’ don’t require the same amount of coordination as large framework or library, are
easier to compose and take up less space in browser bundles.” Another developer P43
stated that “it has a small size when installed so opening a web app or downloading a
mobile app is faster.”

Helping the Community & Personal Satisfaction (22.03%). Since JavaScript devel-
opers often rely on external packages due to the lack of a comprehensive standard
JavaScript library (Abdalkareem et al. 2017; Fuchs 2016), developers reported that they
publish trivial packages to provide other developers with useful code. For example,
P2 & P32 said “I use npm as snippet library with docs/test with the added benefit of
the community.” & “Finishing those pieces becomes obviously useful and important,
because you know that people outside of your immediate team will need them.”

In addition, to the reasons of helping the community, four developers in our sur-
vey said that they get personal satisfaction when they contribute, especially when their
packages are used by other developers. For instance, the participant P28 wrote “sat-
isfaction from seeing people downloading my packages, [...], the feeling of helping

@ Springer

Empir Software Eng (2021) 26: 27 Page 11 0of 24 27

others”. This is a very interesting observation which shows that in some cases, there
are non-technical reasons for publishing these trivial packages.

Maintenance Overhead (16.95%). Several developers consider the saving of mainte-
nance effort through published trivial packages. The fact that these trivial packages are
small with simple functionality makes them require less updates, unless they have sig-
nificant changes. This reason was clearly described by developer P4 who said “Less
maintenance cost, a module with a very tight scope and simple set of features (with no
plans to expand to a broader scope) will likely not require much updates or mainte-
nance by the author.” & P50 said that “They are also easier to version because there is
less code to change and so a version update is almost always significant to the entire
package”. There is of course a flip side to this, since having too many packages to keep
track of may introduce maintenance overhead of another kind. We discuss this in more
details later in the paper.

Dependency Management (6.68 %). Developers also report the fact that publishing
trivial packages can provide developers with easy to manage dependencies/packages.
For example, developers believe that trivial packages are much easier to manage than
large JavaScript framework e.g., P51 “If your dependencies are small, it’s easier to
swap them out for other code. Once you start depending on ‘swiss army knife’ style
modules, it becomes harder to migrate away.”

Summary of findings: JavaScript developers reported that they publish triv-
ial packages for sharing reusable components, testing and documentation,
separation of concern, and for optimization reasons.

4.2 RQ2:What are the Potential Disadvantages of Publishing Trivial Packages?

On the flip side, we also wanted to examine whether developers see any potential disadvan-
tages of publishing trivial packages. To extract the main disadvantages of publishing trivial
packages, we followed the same process used to analyze the answers of the first RQ. We

Table 4 Drawback for publishing trivial packages

D Problem Responses (%)

1. Maintaining Multiple Packages 35.59% |
2. Dependency Hell 22.03% [|
3. Find the Right Packages 15.25% [|
4. Duplicate Packages 13.56% |
5. Long Time to Install 8.47% |
6. Other 22.03% |

Responses can sum to more than 100% since respondents can report more than one problem

@ Springer

27 Page12of24 Empir Software Eng (2021) 26: 27

also found the inter-rater agreement between the two authors to be 0.86, which is considered
to be an excellent agreement (Fleiss et al. 2013).

Table 4 lists the extracted disadvantages and the percentage associated with each stated
disadvantage. We detail each specified disadvantage below:

1. Maintaining Multiple Packages (35.59 %). The most reported disadvantage is the fact
that publishing trivial packages can increase the work-load for developers to maintain
and keep track of each package. For example. P2 said that “Additional tooling for main-
taining lots of repo and modules”. P8 “Maintaining packages on npm is annoying. Also,
github alerts/issues does’t scale well across many repositories”. Also, developer P40
stated as a disadvantage that “Keeping track of everything I have published.” This is
interesting in light of the fact that one of the advantages of publishing trivial packages
is lower maintenance. However, we believe that publishing many trivial packages intro-
duces a different type of maintenance, which involves keeping up with many different
packages.

2. Dependency Hell (22.03%). Developers also had trouble dealing with multiple depen-
dencies that trivial packages may cause. For instance, developer P16 reported that “For
me, the disadvantage is when you are several levels deep and need to push a patch. If
you patch one package that two other levels are relying on, those two levels then should
update the dependency and publish new versions as well. This can be a pain, but ulti-
mately is much better of a plan than copy/pasting the code or not being specific with
semver, which both cause enormous and horrible problems.” While this issue can be
directly related to the application level, developers also reported this concerning on the
npm ecosystem level. For example, P18 stated “The ecosystem gets larger dependency
trees. With many developers and packages that can break at any time.”

3. Finding the Right Packages (15.25%). Another problem reported by the developers
is the lack of an advanced searching tool, especially when there are many packages that
do similar things. Developers believe that publishing trivial packages increases the size
of the ecosystems. For example, P14 & P1 explain this concern. P14 said “There are
too many alternative for everything, is not always clear what is the benefit for each
one.” and P1 said “The number of quality packages that match your search query might
be significantly less then the number of total packages”. This point is very important,
since npm as an ecosystem must deal with such undesired evolution or it becomes too
noisy to be effective for developers.

4. Duplicate Packages (13.56%). JavaScript developers also reported how publishing
trivial packages can lead to having duplicated packages in the ecosystem. For example,
P42 said “Small packages are remarkably easy to write and publish and therefore make
it easy to ‘pollute’ the ecosystem with duplicated entries.”, P7 said “Many repeated
packages”, and P27 “They are sometimes replicated, or are replicated with small
changes.” This findings is related to the previous disadvantage since having duplicates
also makes it harder to find the right package.

5. Long Time to Install (8.47%). The least cited disadvantage reported by developers is
the fact that publishing trivial packages can cause long installation times. In general,
trivial packages provide one single functionality, and in most cases developers depend
on several of these trivial packages, which as a results increases the number of depen-
dencies of a project. Thus, installing such a long list of dependencies may result in long
installation and build times. For instance, P6 stated that “As an end user I often end up
with tens of thousands of packages installed in my projects and it takes a lot of time to
install them.”

@ Springer

Empir Software Eng (2021) 26: 27 Page 13 0of 24 27

Other category was added to categorize disadvantages that are rarely reported and/or
did not fit into any of the major categories that we extracted.

Summary of findings: Maintaining multiple packages, dependency hell, and
finding the right packages are the most reported disadvantages of publishing
trivial packages.

4.3 RQ3:How do Developers Believe that we can Alleviate the Overhead of Having
so many Trivial Packages?

In addition to discovering the disadvantages of publishing trivial packages, we also asked
the developers how they would alleviate the issues related to the disadvantages of publish-
ing so many trivial packages. Of all the survey respondents, 88.14% of them shared their
solutions on how to alleviate the disadvantages they mentioned in the previous survey ques-
tion. Again, since the responses of this survey question is free-text, we perform a formal
manual analysis and measure level of agreement between the two annotators. We found the
inter-rater agreement to be 0.79.

Table 5 shows the extracted alleviation strategies suggested by developers. We detail

each alleviation strategy below:

1.

Grouping Packages (25.00%). The most commonly cited alleviation is to group mul-
tiple trivial packages. In fact, developers blame publishing trivial packages on many
issues, which include maintaining multiple packages, dependency hell, etc. For exam-
ple, developer P46 explicitly stated that “Combine multiple small packages into a single
library for an application archetype”. Also, developers reported solution of hosting
trivial packages that they proposed or already used. This strategy is well explained by
P2 & P38 who said P2: “Better multiple-packages repositories (monorepo) tooling” &
P38: “You can put several packages in one repo”. Although this is suggested by devel-
opers, how to group the trivial packages is a different issue that we plan to work on
next. As we show later, applying this strategy can save enormous resources.

Dependency Management Tools (11.54%). Developers also suggested managing
dependencies through better tools. As the previous question showed, more than 22%

Table 5 Alleviation for publishing trivial packages

D Alleviation Strategies Responses (%)

1. Grouping Packages 25.00% |
2. Dependency Management Tools 11.54% |
3. Better Search Tool 7.69% |
4. Writing Better Tests & Documentations 5.77% |
5. Improving the Ecosystem Policy 3.85% |
6. Removing Duplicate Packages 3.85% |

@ Springer

27

Page 14 of 24 Empir Software Eng (2021) 26: 27

of the developers are concerned about the extra dependencies. Even though this issue
is a well-studied problem in the literature (Mirhosseini and Parnin 2017), developers
still face these issues and need better solutions. Developers reported having dependency
management tools as a possible alleviation to this problem. For instance, developers
P30 stated “A tool like greenkeeper makes it possible.” and P16 “Services like green-
keeper and renovate help to update dependencies easily. You can even set them to run
your tests, and if they pass, auto-merge the PR. This way the only thing left up to the
author is publishing the package.”
Better Search Tools (7.69%). Related to the problem of finding the right packages,
developers are interested to have a better search engine. In fact, there have been several
attempts to build search functionality into the npm ecosystem e.g., the “npms”,! “npm
discover tool”,? and the “npm packages PageRank” tool.> Most of these search engines
use the keywords provided by package developers and other popularity measure, such
as the number of downloads and starts to rank packages. Developers believe that more
advanced search engines are need, e.g., search engines that use the semantics of the
source code. For example, developer P59 explains this idea in their response: “Make a
better search engine for packages, somehow they should look at the actual code as well
so that you could find modules having certain code snippets no matter what they are
named.”
Writing Better Tests & Documentations (5.77%). More than 5% of the developers
see that several problems related to publishing trivial packages, namely dependency hell
and finding the right packages can be simply mitigated with better tests and documen-
tation. For instance developers P7 & P40 stated that P7: “write test for a npm package,
this can help me to give up publishing useless packages.”. P40: “be more diligent in
what i publish & actually writing documentation”.
Improving the Ecosystem Policy (3.85%). A less commonly proposed solution by
developers is to improve or change the software ecosystem’s policies. For example,
P35 stated “Better npm policy regarding package quality: some base requirements, like
tests, correspondance of name and function, responsibility of an author, reasonable
package size/dependencies, shared control over the package.”. In fact, software ecosys-
tems continue to improve their regulation and policies. A clear example of such policy
changes is the incident of left-pad where npm maintainers changed the policy to not
allow developers to unpublish packages from npm, which was the main cause of the
incident.
Removing Duplicate Packages (3.85%). Other JavaScript developers in our survey
propose the idea of removing duplicated packages from npm. Developer P27 explain
this idea. “Multiple modules which do the same thing can be consolidated, and the old
ones deprecated and have their usages replaced in public repositories.”.

Also, developers reported some other less common recommended solutions to alle-
viate the disadvantage of publishing trivial packages, which do not really warrant their
own category. For example, P4 “Better GitHub integration with npm, for example the

Thttps:/npms.io/
Zhttp://www.npmdiscover.com/
3http://anvaka.github.io/npmrank/online/

@ Springer

https://npms.io/
http://www.npmdiscover.com/
http://anvaka.github.io/npmrank/online/

Empir Software Eng (2021) 26: 27 Page 150f 24 27

1000 A

750 -

500 -

Frequency

250 A

O.

02 03 04 05 06 07 08 09 10 11 12
Co-usage Candidate Groups

Fig. 1 The bar-plot shows the distribution of co-usage candidate group of trivial packages

ability to publish a patch/update to npm from GitHub would allow me to update mod-
ules much more quickly.” & P50 “Provide more information to the community about
why relying on trivial/small packages is good.”

Summary of findings: Developers proposed six strategies to alleviate the disad-
vantages of having trivial packages on the ecosystem. The most popular strategy
is to combine trivial packages into one large package.

4.4 RQ4: What is the Impact of Grouping Trivial Packages on the npm Ecosystem?

We examine the most reported alleviation of publishing trivial packages by our survey
participants, which grouping co-usage packages. To do so, we analyzed the entire npm
ecosystem and identify co-usage trivial packages.

Figure 1 shows bar plots of the co-usage trivial package groups (frequency vs. group
size). We find 3,762 groups from the 87,092 cases, with group sizes ranging between 2-12
trivial packages. The Figure shows that the most frequent co-usage trivial package groups
sizes are five, six, and seven, with the number of group being 915, 967, and 802, respec-
tively. Even though these co-usage group are quite large in some cases (i.e., they contain
more than five trivial packages in one group), this figure clearly illustrates that these trivial
packages can be grouped together.

In some cases, even the package names are clear indicators that they should be grouped
somehow. For example, one group containing six trivial packages, that has a
frequency co-usage value of 0.8 has the following packages in it [validate.io-num
ber-primitive, validate.io-matrix-1like, validate.io-array-1like,
validate.io-nan,validate.io-typed-array-1like, validate.io-posi
tive-primitive]. Given that all these packages start with validate.io, it is almost clear
that they should be grouped, yet they are not.

After determining the potential groups of trivial packages, we would like to examine
the impact of this grouping. To do so, we examine the direct impact of this grouping in

@ Springer

27 Page16of 24 Empir Software Eng (2021) 26: 27

1e+07
1e+07

1e+05
1e+05

Number of Downloads
Number of Downloads

= | m Non Grouped
2|8 Gioumed
b

— ® Non Grouped B Non Grouped

O Grouped

Number of Downloads (Log Scaled)
Number of Downloads (Log Scaled)

1e+03

Number of Downloads (Log Scaled)

1e‘+03

(@) (b) (© (d)

| m Non Grouped — = NonGrouped% |m NnnGvouped>_ " Non Gmuped>
B Gouped B Grouped B Croupes B Crouped

() (€3] () ® ()

25000 35000
1 1

15000 25(‘100 35000
15000 25?00 35000
15000 25?00 35000

15000
1

Number of Downloads
Number of Downloads
Number of I‘Jownloads
Number of :Downloads
Number of Downloads

W Non Grouped
O Grouped

5000
5000
5000

5000

Fig. 2 Beanplots showing the distributions of the number of download of non grouped and grouped trivial
packages based on their group size. The horizontal lines represent the medians

two complementary ways. We measure both the number of downloads and the number of
dependencies that we can save by grouping these trivial packages. Hence, we first compare
the downloads for the trivial packages in the case that they are grouped (based on co-usage)
or not (which is what is happening now).

Figure 2 shows bean-plots for the download count for non-grouped vs. grouped trivial
packages. We can see that as expected in most cases, the download count is lower in the
case where trivial packages are grouped. The download count for a group of packages is
taken as the maximum number of downloads for any package in the group. For example if a
group has three packages that are downloaded 10, 20 and 50 times, then we would take 50
as the group download count. Figure 2 shows the average download count for non-grouped
trivial packages based on the group size ranges between 7,031,470 (group of two packages)
and 32,756 (group of eleven packages) while it ranges between 3,979,235 and 6,997 for
the trivial packages after they are grouped. We perform a Mann Whitney test (Mann and
Whitney 1947) to determine if the difference between the two distributions is statistically
significant (with a p-value = 0.05). We find that the difference is statistically significant in
all cases, expect for the group size of two trivial packages.

Second, we also quantitatively examine the percentage of the saved dependencies in
the npm ecosystem when the co-used trivial packages are grouped. To do so, we count
the total number of dependencies npm packages have before grouping the trivial packages
and after grouping them. As we describe earlier, we found 3,762 different group of co-
used trivial packages that we count their dependencies. We found that the total number
of dependencies before the grouping is 16,166 and found number of dependencies after
grouping the co-used trivial packages equal to 14,074. Then, we calculate percentage of the
saved dependencies in the npm ecosystems after grouping the trivial packages as following:
1616611074 4 100 = 12.94.

This analysis confirms developers’ belief about the disadvantages of publishing trivial
packages in the npm ecosystems, for example, the dependency overhead problem. It also
shows that suggested alleviations to reduce the drawback of having published trivial pack-
ages are useful. In particular, our results show that approximately 13% of the dependencies
can be saved in the npm ecosystem by grouping co-used trivial packages.

@ Springer

Empir Software Eng (2021) 26: 27 Page 17 of 24 27

Summary of findings: Our results show that grouping co-usage trivial pack-
ages can save approximately 13% of the number of dependencies in the npm
ecosystem.

5 Implications

In this section, we discuss the potential implications of our findings for both practitioners
and researchers.

5.1 Implications for Practitioners

Our findings show that publishing trivial packages introduces several problems that may
impact other users and the entire npm ecosystem. The first direct implication of our results
is that developers should rethink their publishing policies. Developers should ask several
systematic questions before deciding to publish a trivial package since such packages do
come with an associated cost (i.e., maintenance of these packages, support of users of these
packages, etc.). Some questions that developers should ask include: Is the newly published
trivial package of good quality? Does the new package warrant its independent publication
or is it better added it to an existing published package? Will I have the resources to appro-
priately maintain this as a new package (e.g., releasing patches)? In addition, our findings
reveal that having too many trivial packages may introduce “noise” or inflate the ecosystem.
This leads to extra work for the maintainers of the ecosystem itself who need to periodi-
cally perform tasks to maintain the health of the ecosystem. Such tasks include removing
duplicate packages, scanning packages for vulnerabilities, and facilitating effective search
of relevant packages. Thus, developers should not assume that publishing a trivial pack-
age is a free lunch. We recommend that developers perform a careful investigation before
publishing packages to make sure such packages are actually needed.

The second direct implication is for the npm ecosystem maintainer. npm maintainers
should consider introducing a software quality practice to make sure that newly published
packages are not negatively impacting the ecosystem. For example developer, P35 indi-
cated that “Better npm policy regarding package quality: some base requirements, like test.”
Other interesting mechanisms that can be implemented by the npm maintainers suggested
by the developer P14, who stated that “Detect which of them are not being used and remove
them after being some days in quarantine”. We believe that putting these recommendations
in place will increase the benefits of publishing trivial packages while mitigating their neg-
ative impact. Even if such a check is not possible, publishing some official guidelines to
developers stating the minimum utility of a package or a policy to avoid duplication would
be helpful for the ecosystem as a whole.

5.2 Implications for Researchers
While the findings of our study show that developers reported several advantages of pub-
lishing trivial packages, developers also reported some disadvantages of having trivial

packages and provide some alleviations of these disadvantages. We believe these reported
disadvantages and alleviation open a wide range of new research opportunities.

@ Springer

27 Page 18of 24 Empir Software Eng (2021) 26: 27

First, our study exposes the need for appropriate searching tools since developers reveal
that publishing trivial packages increases the number of packages in the ecosystems, making
it difficult to find the right package. While there exist some tools e.g., npms,* future research
needs to be conducted experiments to evaluate these tools and make improvements to these
exciting tools. One example is the need to go beyond popularity metrics such as downloads
when ranking packages and considering other semantic- or functionality-related attributes
when ranking searched packages.

Second, developers reported that publishing trivial packages leads to an increase in the
number of duplicated packages in npm ecosystem. We believe that empirical studies that
examine how prevalent such duplicated packages really are and how to alleviate the impact
of such duplication are needed to support the ecosystem community. Although there have
been some studies that examine duplicated repositories on GitHub (e.g. Lopes et al. 2017,
Gharehyazie et al. 2017), we are not aware of any study that investigates or proposes tech-
niques to detect duplicate ecosystem packages. In addition, survey respondents also pointed
out that improving the npm ecosystem policy will alleviate some of the drawbacks of
publishing trivial packages. Our findings motivate future work to empirically evaluate the
current npm ecosystem policies in order to guide new contributions (or other) policies. We
feel that this is an important area that needs much work. Finally, to examine the grouping
strategy of trivial packages, we performed an analysis based on the co-usage. One future
work is to build a tool that automatically combines these co-usage trivial packages and
empirically examines its usefulness for both JavaScript developers and the npm ecosystem.

6 Related Work

In recent years, analyzing the characteristics of software ecosystems has gained momentum
(Jansen et al. 2013; Serebrenik and Mens 2015; Sawant et al. 2018; Vasilescu et al. 2016;
Trockman et al. 2018; Valiev et al. 2018; Linares-Véasquez et al. 2014a; Aghajani et al. 2018;
Bavota et al. 2015; Abdalkareem et al. 2020). In this section, we discuss the work that are
related to our study.

As mentioned earlier, in our prior work (Abdalkareem et al. 2017), we examined the rea-
sons and drawback of using trivial package from the prospective of JavaScript users. In that
study, we mined approximately 230,000 npm packages and 38,000 JavaScript projects to
examine why JavaScript developers resort to use trivial packages in their software projects.
We found that trivial packages are common and developers believe that they offer them with
well-tested code. However, our analysis also showed that some of these trivial packages can
bring more pain than they are worth, since some have as many as 20 dependencies.

Recently, Decan et al. (2018) investigated the evolution of packages dependency net-
works for seven software ecosystems. Their findings revealed that the studied software
ecosystems grew over time in terms of number of published and updated packages. They
also observed an increase in the number of transitive dependencies for 50% of the studied
packages. Wittern et al. (2016) investigated the evolution of the Node Package Manager
(npm) ecosystem in an extensive study that covered the dependence between npm packages,
download metrics, and the usage of npm packages in real JavaScript applications. One of

“https://npms.io/

@ Springer

https://npms.io/

Empir Software Eng (2021) 26: 27 Page 19 of 24 27

their main findings was that npm packages and updates of these packages are steadily grow-
ing. Also, more than 80% of packages have at least one direct dependency package that
results in complex dependency network of the ecosystem.

Other areas of research focus on investigating the challenges of reusing packages from
software ecosystems. Bogart et al. (2016) empirically studied three software ecosystems—
Eclipse, R/CRAN, and Node.js/npm. They found that developers struggle with changing
versions of the packages as the changes might break dependent code. They also found
that developers demand to have techniques to identify breaking changes in upstream pack-
ages, especially those that are not correctly signaled by semantic versioning. Bavota et al.
(2015) studied the evolution of dependencies in the Apache ecosystem and highlighted that
dependencies have an exponential growth and must be taken care of by developers. Con-
sidering that changes of a package might break its dependent packages, they found that
developers were reluctant to upgrade the packages they depend on.

Interestingly, previous research by Abdalkareem et al. (2017) and Bogart et al. (2016)
found that although npm packages make it easier for developers to publish and use pack-
ages, npm does not review or test the packages, thus, the users decide which packages suit
their needs better, leading to a healthy competition between similar packages in terms of
functionalities in npm ecosystem.

Kula et al. (2018) studied the update of reused packages from software ecosystems and
the types of these updates. They found that developers tend not to update their dependen-
cies even though these updates are related to the addition of new features and patches to fix
vulnerabilities. Scholtz et al. (2018) stated that outdated dependencies might cause security
vulnerabilities, and they developed a tool that can automatically detect dependencies secu-
rity risks. The tool can also update the outdated dependencies by running the test of the
projects dynamically to check whether an update will break the code.

Sawant et al. (2018) found that APIs are a tremendous resource when they are stable, but
the API deprecations also have impact on the projects that use these API. Such dependency
impact is also observed in our study. Linares-Vésquez et al. (2014b) found that developers
use social media to learn about the changes of software ecosystems, showing their concern
about the impact of the changes.

Compared to the prior work that studies software ecosystems by focusing on the overall
structure of an ecosystem, our study takes a deeper step with an analysis of the ecosystems
from an inside view. Besides gaining a deeper understanding of the impact of publish-
ing trivial packages on the npm ecosystem, we examine investigate strategies proposed the
JavaScript developers to mitigate the problems of publishing trivial packages in npm.

7 Threats to Validity

We discuss the limitations of our study and the applicability of the results derived through
our approach. For this purpose we discuss our work along three types of validity (Yin 2009)
that include internal validity, construct validity, and external validity.

7.1 Internal Validity
Internal validity concerns factors that could have influenced our analysis and findings.
First, in our study, we rely on the definition of trivial packages that is provided in prior

work (Abdalkareem et al. 2017) to determine trivial npm packages. Although this defini-
tion of trivial packages was established based on surveying JavaScript developers, it maybe

@ Springer

27 Page20of24 Empir Software Eng (2021) 26: 27

there are other possible definition for trivial packages. However, none of the 59 survey par-
ticipants that we emailed about publishing trivial packages indicated that they are not trivial
packages. This is a support that the used definition of trivial packages applies in the vast
majority of cases. Second, to identify trivial packages in the npm ecosystem, we use the
Understand tool to measure the number of line of code and cyclomatic complexity of the
trivial packages. Hence, we heavily rely on the accuracy of Understand tool in extracting the
studied measurements. However, the extensive use of Understand tool gives confidence in
its analyses and results. We also use the definition of trivial packages provided by Abdalka-
reem et al. (2017). However, this definition, consider only analyzing JavaScript code and
its variation such as Type Script. However, npm packages may contain code from other
programming languages such as C/C++. To mitigate this threat, we examine a sample of
the identified trivial packages, and we found that all examined cases that flagged as trivial
packages are correctly classified. Finally, to count unique developers of trivial packages, we
extracted the names and emails of the developers from the npm registry, which may intro-
duce the threat of counting duplicated developers. However, npm enforces developers to
have a unique identity in the registry, which gives us confident of using this approach.

7.2 Construct Validity

Construct validity considers the relationship between theory and observation, in case the
measured variables do not measure the actual factors. The analysis of responses provided
by participants was performed manually, thus giving rise to potentially subjective judgment.
To mitigate this threat, we employ a formal analysis and measure the agreement between
the first and second authors. We found that the level of agreement between the two authors
to range between +0.79 and +0.86, which shows excellent agreement levels. To answer our
research questions, we conducted an online survey. We received 59 responses emails out
250 that we sent, which translate to 23.6% responses rate. While our response rate may
be considered small, it is comparable or even higher than response rates reported in other
software engineering surveys (Singer et al. 2008). Also, self-selection bias may influence
our study since we only survey developers who publish trivial packages. To mitigate this
bias, we select the developers randomly who publish different number of packages (trivial
and non-trivial).

7.3 External Validity

Threats to external validity concern the generalization of our findings. In this study, we focus
on one specific software ecosystem, which is the npm that is one of many software ecosys-
tems. Hence, our finding and observation may not generalize to other software ecosystems.
Also, the software ecosystem that we studied is the main software ecosystem for JavaScript
programming languages. Thus, our results may not be generalized to other programming
languages. That said, npm is one of the largest software ecosystem, which gives us confi-
dence in our findings. In addition, to ensure that our survey participants understand what
constitutes a trivial package, we surveyed 59 JavaScript developers who had published at
least ten trivial packages in the past. Surveying a larger number or a different population of
developers may lead to different results. Finally, we only surveyed developers who publish
at least ten trivial packages since they have experience in dealing with and alleviating prob-
lems related to publishing trivial packages. That said, our findings may not be generalized
to other developers who never publish trivial packages.

@ Springer

Empir Software Eng (2021) 26: 27 Page210of 24 27

8 Conclusion

In this paper, we perform an empirical study to gain a better understand of the phenomenon
of publishing trivial packages on npm. In particular, we answer questions that include why
developers publish trivial packages, what are the drawbacks of publishing trivial packages,
and how do developers alleviate the problems relate to publishing such trivial packages.

To answer these questions, we analyzed more than 750,000 packages that are published
on npm to identify trivial packages and their authors. We then conducted a survey with 59
JavaScript developers who published at least one trivial package in order to answer our
research questions. Our findings show that developers tend to publish trivial packages for
the reasons that they help them building reusable components, testing & documentation,
separation of concern. Even the developers who publish these trivial packages reveal that
publishing such packages has some problems that include the maintenance of multiple pack-
ages, dependency hell, finding the right package, and increase the duplicated packages in the
npm ecosystems. Moreover, we found that the majority of the developers in our survey sug-
gested that trivial packages can be grouped together to alleviate problems associated with
publishing them. Then, to quantitatively examine the impact of these trivial on the ecosys-
tem itself. We found that if trivial packages that are always used together, and grouping
them will help the ecosystem to reduce the number of dependencies by approximately 13%.

Acknowledgments We thank the JavaScript developer community and npm developers and special thanks
for the developers who kindly respond to our survey.

References

Abdalkareem R (2017) Reasons and drawbacks of using trivial npm packages: the developers’ perspective.
In: Proceedings of the 2017 11th joint meeting on foundations of software engineering, ESEC/FSE 2017.
ACM, pp 1062-1064

Abdalkareem R, Nourry O, Wehaibi S, Mujahid S, Shihab E (2017) Why do developers use trivial packages?
An empirical case study on npm. In: Proceedings of the 2017 11th joint meeting on foundations of
software engineering, ESEC/FSE 2017. ACM, pp 385-395

Abdalkareem R, Oda V, Mujahid S, Shihab E (2020) On the impact of using trivial packages: an empirical
case study on npm and pypi. Empir Softw Eng 25(2):1168-1204

Abdalkareem R, Shihab E, Rilling J (2017) On code reuse from stackoverflow. Inf Softw Technol 88(C):148—
158

Aghajani E, Nagy C, Bavota G, Lanza M (2018) A large-scale empirical study on linguistic antipatterns
affecting apis. In: 2018 IEEE international conference on software maintenance and evolution (ICSME).
IEEE, pp 25-35

Bavota G, Canfora G, Di Penta M, Oliveto R, Panichella S (2015) How the apache community upgrades
dependencies: an evolutionary study. Empir Softw Eng 20(5):1275-1317

Bavota G, Linares-Vasquez M, Bernal-Céardenas CE, Penta MD, Oliveto R, Poshyvanyk D (2015) The impact
of api change- and fault-proneness on the user ratings of android apps. IEEE Trans Softw Eng 41(4):384—
407

Bogart C, Kistner C, Herbsleb J, Thung F (2016) How to break an api: cost negotiation and community
values in three software ecosystems. In: Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering, FSE 2016. ACM, pp 109-120

Chen X, Abdalkareem R, Mujahid S, Shihab E, Xia X (2019) Helping or not helping? Why and how trivial
packages impact the npm ecosystem. Zenodo. https://doi.org/10.5281/zenodo.3417393

Cox R (2019) Surviving software dependencies. Commun ACM 62(9):36—43

DeBill E (2019) Modulecounts. http://www.modulecounts.com/#. Accessed 16 Jan 2019

Decan A, Mens T, Grosjean P (2018) An empirical comparison of dependency network evolution in seven
software packaging ecosystems. Empir Softw Eng

@ Springer

https://doi.org/10.5281/zenodo.3417393
http://www.modulecounts.com/#

27 Page22of24 Empir Software Eng (2021) 26: 27

Fard AM, Mesbah A (2017) Javascript: the (un)covered parts. In: 2017 IEEE international conference on
software testing, verification and validation (ICST), pp 230-240

Fleiss JL, Levin B, Paik MC (2013) Statistical methods for rates and proportions. Wiley, New York

Fuchs T (2016) What if we had a great standard library in javascript? — medium. https://medium.com/
@thomasfuchs/what-if-we-had-a- great-standard-library-in-javascript-52692342ee3f.pw7d4cq8;.
Accessed 24 Feb 2017

Gharehyazie M, Ray B, Filkov V (2017) Some from here, some from there: cross-project code reuse in
github. In: Proceedings of the 14th international conference on mining software repositories, MSR *17.
IEEE Press, pp 291-301

Jansen S, Brinkkemper S, Cusumano MA, Jansen S, Brinkkemper S, Cusumano MA (2013) Software ecosys-
tems: analyzing and managing business networks in the software industry. Edward Elgar Publishing,
Incorporated

Kula RG, German DM, Ouni A, Ishio T, Inoue K (2018) Do developers update their library dependencies?
Empir Softw Eng 23(1):384-417

Linares-Vasquez M, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D (2014) How do api changes trig-
ger stack overflow discussions? a study on the android sdk. In: Proceedings of the 22nd international
conference on program comprehension, ICPC 2014. ACM, pp 83-94

Linares-Vasquez M, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D (2014) How do api changes trig-
ger stack overflow discussions? A study on the android sdk. In: Proceedings of the 22nd international
conference on program comprehension. ACM, pp 83-94

Lopes CV, Maj P, Martins P, Saini V, Yang D, Zitny J, Sajnani H, Vitek J (2017) Déjavu: a map of code
duplicates on github. Proc ACM Program Lang 1(OOPSLA)

MacDonald F (2018) How a programmer nearly broke the internet by deleting just 11 lines of code. https://
www.sciencealert.com/how-a-programmer-almost-broke- the-internet-by-deleting- 11-lines-of-code.
Accessed 09 June 2020

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. Ann Math Stat 18(1):50-60. (11 pages)

Mirhosseini S, Parnin C (2017) Can automated pull requests encourage software developers to upgrade out-
of-date dependencies? In: Proceedings of the 32nd IEEE/ACM international conference on automated
software engineering ASE 2017. IEEE Press, pp 84-94

npm Documentation (2020) npm-registrty — npm documentation. https://docs.npmjs.com/using-npm/
registry.html. Accessed 10 June 2020

Orsila H, Geldenhuys J, Ruokonen A, Hammouda E-B, Imed, Damiani E, Hissam S, Lundell B, Succi
G (2008) Update propagation practices in highly reusable open source components. In: Open source
development, communities and quality. Springer, US, pp 159-170

Sawant AA, Robbes R, Bacchelli A (2018) On the reaction to deprecation of clients of 4 + 1 popular java
apis and the jdk. Empir Softw Eng 23(4):2158-2197

Scholtz A, Mehrotra P, Naumenko G (2018) Detection and mitigation of security vulnerabilities, pp 1-9

Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans Softw Eng
25(4):557-572

Serebrenik A, Mens T (2015) Challenges in software ecosystems research. In: Proceedings of the 2015
European conference on software architecture workshops, ECSAW ’15. ACM, pp 40:1-40:6

Singer J, Sim SE, Lethbridge TC (2008) Software engineering data collection for field studies. In: Guide to
advanced empirical software engineering. Springer, London, pp 9-34

StackOverflow (2020) Stack overflow developer survey 2020. https:/insights.stackoverflow.com/survey/
2020/. Accessed 09 June 2020

Tool SU (2020) Scitools.com. https://scitools.com/. Accessed 10 June 2020

Trockman A, Zhou S, Kistner C, Vasilescu B (2018) Adding sparkle to social coding: an empirical study
of repository badges in the npm ecosystem. In: Proceedings of the 40th international conference on
software engineering, ICSE 2018. ACM, pp 511-522

Valiev M, Vasilescu B, Herbsleb J (2018) Ecosystem-level determinants of sustained activity in open-source
projects: a case study of the pypi ecosystem. In: Proceedings of the 2018 26th ACM joint meeting on
european software engineering conference and symposium on the foundations of software engineering,
ESEC/FSE 2018. ACM, pp 644-655

Vasilescu B, Blincoe K, Xuan Q, Casalnuovo C, Damian D, Devanbu P, Filkov V (2016) The sky is not
the limit: multitasking across github projects. In: 2016 IEEE/ACM 38Th international conference on
software engineering, ICSE 2016. IEEE, pp 994-1005

Wikipedia (2018) Unix philosophy - wikipedia. https://en.wikipedia.org/wiki/Unix_philosophy. Accessed 11
Jan 2019

@ Springer

https://medium.com/@thomasfuchs/what-if-we-had-a-great-standard-library-in-javascript-52692342ee3f.pw7d4cq8j
https://medium.com/@thomasfuchs/what-if-we-had-a-great-standard-library-in-javascript-52692342ee3f.pw7d4cq8j
https://www.sciencealert.com/how-a-programmer-almost-broke-the-internet-by-deleting-11-lines-of-code
https://www.sciencealert.com/how-a-programmer-almost-broke-the-internet-by-deleting-11-lines-of-code
https://docs.npmjs.com/using-npm/registry.html
https://docs.npmjs.com/using-npm/registry.html
https://insights.stackoverflow.com/survey/2020/
https://insights.stackoverflow.com/survey/2020/
https://scitools.com/
https://en.wikipedia.org/wiki/Unix_philosophy

Empir Software Eng (2021) 26: 27 Page 23 of 24 27

Wittern E, Suter P, Rajagopalan S (2016) A look at the dynamics of the javascript package ecosystem. In:
Proceedings of the 13th international conference on mining software repositories, MSR 2016. ACM,
pp 351-361

Yin RK (2009) Case study research: design and methods (applied social research methods). Sage, London
and Singapore

Zimmermann M, Staicu C-A, Tenny C, Pradel M (2019) Small world with high risks: a study of secu-
rity threats in the npm ecosystem. In: Proceedings of the 28th USENIX security symposium (USENIX
Security, USENIX 2019. USENIX Association

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Xiaowei Chen is a master’s student at the Department of Computer
Science and Software Engineering at Concordia University under Dr.
Emad Shihabs supervision. Her research interest focus on software
maintenance and evolution.

Rabe Abdalkareem is a postdoctoral fellow in the Software Anal-
ysis and Intelligence Lab (SAIL) at Queens University, Canada. He
received his Ph.D. in Computer Science and Software Engineering
from Concordia University, Montreal, Canada. His research investi-
gates how the adoption of crowdsourced knowledge affects software
development and maintenance. Abdalkareem received his masters in
applied Computer Science from Concordia University. His work has
been published at premier venues such as FSE, MSR, ICSME and
MobileSoft, as well as in major journals such as TSE, IEEE Soft-
ware, EMSE and IST. Contact him at abdrabe @ gmail.com; https://
rabeabdalkareem.github.io/.

@ Springer

https://rabeabdalkareem.github.io/.
https://rabeabdalkareem.github.io/.

27 Page24of 24

Empir Software Eng (2021) 26: 27

@ Springer

Suhaib Mujahid student in the Department of Computer Science and
Software Engineering at Concordia University. He received his mas-
ters in Software Engineering from Concordia University (Canada)
in 2017, where his work focused on the detection and mitigation
of permission-related issues facing wearable app developers. He did
his Bachelors in Information Systems at Palestine Polytechnic Uni-
versity. His research interests include software ecosystems, software
quality assurance, mining software repositories, and empirical soft-
ware engineering. You can find more about him athttp://users.encs.
concordia.ca/smujahi.

Emad Shihab is an Associate Professor and Concordia Univer-
sity Research Chair in the Department of Computer Science and
Software Engineering at Concordia University. His research inter-
ests are in Software Engineering, Mining Software Repositories,
and Software Analytics. His work has been published in some of
the most prestigious SE venues, including ICSE, ESEC/FSE, MSR,
ICSME, EMSE, and TSE. He serves on the steering committees of
PROMISE, SANER and MSR, three of the leading conferences in
the software analytics areas. His work has been done in collabora-
tion with and adopted by some of the biggest software companies,
such as Microsoft, Avaya, BlackBerry, Ericsson and National Bank.
He is a senior member of the IEEE. His homepage is:http://das.encs.
concordia.ca

Xin Xia is an ARC DECRA Fellow and a lecturer at the Faculty
of Information Technology, Monash University, Australia. Prior to
joining Monash University, he was a post-doctoral research fellow
in the software practices lab at the University of British Columbia
in Canada, and a research assistant professor at Zhejiang Univer-
sity in China. Xin received both of his Ph.D and bachelor degrees
in computer science and software engineering from Zhejiang Univer-
sity in 2014 and 2009, respectively. To help developers and testers
improve their productivity, his current research focuses on mining
and analyzing rich data in software repositories to uncover interest-
ing and actionable information.More information at: https://xin-xia.
github.io/.

http://users.encs.concordia.ca/smujahi.
http://users.encs.concordia.ca/smujahi.
http://das.encs.concordia.ca
http://das.encs.concordia.ca
https://xin-xia.github.io/.
https://xin-xia.github.io/.

	Helping or not helping? Why and how trivial packages impact the npm ecosystem
	Abstract
	Introduction
	Paper Organization

	Background and Motivation
	Study Design
	Trivial Package Dataset
	Developer Survey Design
	Manual Analysis of Survey Responses
	Grouping Co-usage Trivial Packages

	Study Results
	RQ1: What are the Potential Advantages of Publishing Trivial Packages?
	RQ2: What are the Potential Disadvantages of Publishing Trivial Packages?
	RQ3: How do Developers Believe that we can Alleviate the Overhead of Having so many Trivial Packages?
	RQ4: What is the Impact of Grouping Trivial Packages on the npm Ecosystem?

	Implications
	Implications for Practitioners
	Implications for Researchers

	Related Work
	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion
	References

